

AD-A235 774

Required Threshold Settings and Signal-to-Noise Ratios for Combined Normalization and Or-ing

Albert H. Nuttall Surface ASW Directorate

Naval Underwater Systems Center Newport, Rhode Island • New London. Connecticut

Approved for public release; distribution is unlimited.

PREFACE

This research was conducted under NUSC Project No. A70272, Subproject No. RR0000-N01, Selected Statistical Problems in Acoustic Signal Processing, Principal Investigator, Dr. Albert H. Nuttall (Code 304). This technical report was prepared with funds provided by the NUSC In-House Independent Research and Independent Exploratory Development Program, sponsored by the Office of the Chief of Naval Research. This report was also prepared under the Multistatic Sonar System, Project No. M20027, Program Manager CDR T. Mason, NAVSEA. The NUSC Program Manager is James W. Kyle, while the principal investigators are Ira B. Cohen and Robert T. Coia.

The technical reviewer for this report was Ira B. Cohen (Code 3332).

REVIEWED AND APPROVED: 10 APRIL 1991

DAVID DENCE

ATD for Surface Antisubmarine Warfare Directorate

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average. I hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headdquarters Services, Directorate for information Deperations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	D DATES COVERED
I. AGENCI USE UNE! (LEEVE DIAIR)	10 April 1991	Progress	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Required Threshold Settings and Signal-to-Noise Ratios for Combined Normalization and Or-ing			PE 61152N
6. AUTHOR(S)			
Albert H. Nuttall			
7. PERFORMING ORGANIZATION NAME	(S) AMD ADDRESS(ES)		B. PERFORMING ORGANIZATION REPORT NUMBER
Naval Underwater Sy New London Laborato New London, CT 0632	ry		TR 8865
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Chief of Naval Rese Office of the Chief Arlington, VA 22217	of Naval Researc	h	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Approved for public			
distribution is unl	imited.		
13. ABSTRACT (Maximum 200 words)			l
transformations of n processing chain. T false alarm probabil input signal-to-nois probabilities. Spec are available by par into the models. When the sizes o the amount of normal also have to be chan maintained; these op listed. In addition thresholds, at the s	he required thres ities are determi e ratios for specializations to no ticular choices of the transformatization and/or or ged if the earlie tions are include, the possibility	or-ing in th hold setting ned, as well ified detect rmalization f parameter ions are cha-ing, the thr probabilit d in the fir of changing	e data s for specified as the required ion or or-ing alone values built nged, that is, resholds will ies are to be st program the number of e nonlinear
14. SUBJECT TERMS threshold setting	signal-t	o-noise rati	O 50
normalization nonlinear	or-ing false al	arm probabil	16. PRICE CODE

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

OF REPORT UNCLASSIFIED

17. SECURITY CLASSIFICATION

SAR

20. LIMITATION OF ABSTRACT

19. SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

13. ABSTRACT (Cont'd)

transformations are changed, is included in the second program listed. Furthermore, four alternatives are allowed for selecting the spacing of the thresholds, namely, equispaced in power, equispaced in decibels, preset normalized thresholds, or preset probabilities.

14. SUBJECT TERMS (Cont'd)

detection probability moments

TABLE OF CONTENTS

	Page
LIST OF SYMBOLS	ii
INTRODUCTION	1
DEFINITIONS OF FUNCTIONS	5
THRESHOLD RESETTING Alternative Size Transformation Different Number of Thresholds Signal-to-Noise Ratio Requirements	7 11 12 13
STATISTICS OF NORMALIZER Example Change in Size of Normalizer	15 16 18
STATISTICS OF OR-ING DEVICE Example Change in Size of Or-ing Device	19 20 22
STATISTICS OF NORMALIZER AND OR-ING DEVICE Example Analytical Checks Extensions Changes in Sizes of Normalizer and Or-ing Device	23 23 29 29 30
INPUT SIGNAL-TO-NOISE RATIO REQUIREMENTS Normalizer Or-ing Device Normalizer and Or-ing Device	31 31 33 34
SUMMARY	37
APPENDIX A. SIMPLIFICATION OF SUMS (74) AND (75)	39
APPENDIX B. PROGRAMS	41
REFERENCES	51

LIST OF SYMBOLS

RV	random variable
IID	independent identically distributed
PDF	probability density function
CDF	cumulative distribution function
CF	characteristic function
Prob	probability
× _m	m-th noise-only random variable, (1)
M	M+1 is the number of random variables $\{x_{m}\}$
p _x (u)	probability density function of $x_{m'}$ (1)
$C_{\mathbf{x}}(X)$	cumulative distribution function of x_m , (1)
$f_{\mathbf{x}}(\xi)$	characteristic function of $x_{m'}$ (2)
$\mu_{\mathbf{x}}(\mathbf{j})$	j-th moment of x_m
$x_{\mathbf{x}}(j)$	j-th cumulant of x _m
~ (P)	inverse cumulative distribution function for x , (3)
f	nonlinear transformation, (5)
У	output of nonlinear transformation, (5)
w _{km}	inputs to normalizer and or-ing device, (8)
x _k	output from or-ing device, (8)
K	size of or-ing operation, (8)
C _y (Y)	cumulative distribution function of y, (9)
^ч 1	first threshold for application to y, (9)
P ₁	specified cumulative probability at Y_1 , (9)
~~ (P)	inverse cumulative distribution function for y, (9)
YT	last threshold for application to y, (10)
T	total number of thresholds, (10)

```
scale factor, (10)
dB_y
           decibel ratio between Y_{T} and Y_{1}, (10)
           t-th threshold for application to y, (11)
Y
           t-th normalized threshold for y, (12)
\frac{\mathbf{Y}}{\mathbf{t}}
           mean of random variable y, (12)
\mu_{\mathbf{v}}
           standard deviation of random variable y, (12)
\sigma_{\mathbf{v}}
           cumulative probability value at threshold Y_+, (13)
P_{+}
1-P<sub>t</sub>
           false alarm probability, (13)
           t-th threshold in decibels, (14), (16)
D<sub>+</sub>
N
           new size of nonlinear transformation, (20)
           output of new nonlinear transformation, (20)
Z
           cumulative distribution function of z, (21)
C_{2}(Z)
           t-th threshold for application to z, (21)
z_{+}
\tilde{C}_{z}(P)
           inverse cumulative distribution function for z, (21)
           t-th normalized threshold for z, (22)
\frac{\mathbf{Z}}{\mathbf{t}}
           mean of random variable z, (22)
\mu_z
           standard deviation of random variable z, (22)
\sigma_z
dB_z
           decibel ratio between Z_{\tau} and Z_{1}, (23)
           new number of thresholds, (24)
U
Z'
           u-th new threshold, (24)
           cumulative probability at Z'_{n}, (25)
P'1
\frac{\mathbf{Z'_u}}{\mathbf{u}}
           u-th normalized threshold for z, (26)
C_{\mathbf{v}}(Y;R)
           cumulative distribution of y with signal present, (27)
           input power signal-to-noise ratio, (27)
R
S_1
           specified probability, (27)
           required signal-to-noise ratio at threshold Y_+, (27)
R_{t}
```

```
j-th detection probability, (30)
Pdi
          average of M random variables, (31)
f_a(\xi)
          characteristic function of a, (32), (36)
p_{a}(u)
          probability density function of a, (32), (37)
          probability density function of y, (34), (39)
p_{\mathbf{v}}(\mathbf{u})
          j-th moment of random variable y, (41)
(b);
          b(b+1)\cdots(b+j-1), (41)
          j-th cumulant of y, (55)
\chi_{\mathbf{v}}(j)
          k-th denominator average, (62)
ak
F<sub>1</sub>,F<sub>2</sub>
          auxiliary constants, (79)
b_k
          k-th denominator average, (81)
L
          new size of or-ing device, (82)
G_1, G_2
          auxiliary constants, (86)
          auxiliary function, (95), (100)
Q_{+}
```

REQUIRED THRESHOLD SETTINGS AND SIGNAL-TO-NOISE RATIOS FOR COMBINED NORMALIZATION AND OR-ING

INTRODUCTION

When weak signals of unknown strength and location have to be detected in the presence of noise of unknown and varying level, it is necessary to make estimates of the intensity of the interfering background. These estimated (noise) levels are then compared with that for a candidate signal level and location for purposes of making statements about the likelihood of signal presence or absence in that particular data segment under investigation. Here, we will investigate the performance capability of such a normalizer, in terms of the false alarm and detection probabilities, and determine the thresholds and input signal-to-noise ratios required to attain these probabilities.

Furthermore, when large amounts of multichannel data have to be processed with limited computational facilities in reasonable or short intervals of time, it is necessary to resort to shortcuts or data reduction in order to avoid overload. One possible approach is to employ or-ing, in which only the largest of a set of quantities is retained for further data processing and decision making.

Finally, in practice, it is often necessary to utilize both normalization and or-ing together. This combination of nonlinear processors requires a resetting of the thresholds that would have been appropriate for use of the normalizer alone. Here, we shall

investigate all three situations, namely normalization, or-ing, and a combination of normalization and or-ing, in terms of the probabilities and thresholds stated above.

When the size of the nonlinear transformation, whether it be normalization, or-ing, or both, is changed, the required thresholds will have to be changed if the previously realized (false alarm) probabilities are to be maintained. For example, suppose we had been or-ing 8 random variables and decided to change the or-ing size to accept 16 random variables instead, for purposes of further data reduction. Then, the required threshold settings would have to be modified to maintain specified false alarm probabilities, as would the required input signal-to-noise ratios for specified detection probabilities. This maintenance of probabilities under a change of size of transformation will be investigated here.

At the same time that the size of a nonlinear transformation is changed, it may be desired to subject its output to a different number of thresholds than were utilized previously. This possibility is allowed and analyzed in addition.

The particular physical situation considered here is that of multiple simultaneous beamformer outputs, each with large banks of narrowband filters subject to envelope-squared detection. For Gaussian noise inputs, the probability density function of each of these device outputs is exponential. Furthermore, when a Gaussian signal is also present at the input of one of these narrowband filters, the corresponding probability density

function of the detected output is still exponential, but with a level governed by the signal-to-noise ratio at that particular filter output. This scenario will be the mainstay of the analysis here.

The physical motivation for this study is to be able to set requantization levels on a display, in order to achieve constant marking density independent of the signal processing parameters such as the amount of or-ing and normalizer size. Such displays occur in active as well as passive sonar systems.

DEFINITIONS OF FUNCTIONS

The random variables (RV) for noise-only, $\{x_m\}$ for $0 \le m \le M$, are independent and identically distributed (IID) with common probability density function (PDF) $p_x(u)$ and cumulative distribution function (CDF) $C_x(X)$, where

$$C_{\mathbf{x}}(X) = \operatorname{Prob}(x_{\mathbf{m}} < X) = \int_{-\infty}^{X} du \ p_{\mathbf{x}}(u) . \tag{1}$$

The corresponding characteristic function (CF) of RV \boldsymbol{x}_{m} is

$$f_{\mathbf{x}}(\xi) = \int d\mathbf{u} \exp(i\xi\mathbf{u}) p_{\mathbf{x}}(\mathbf{u})$$
, (2)

where integrals without limits are over $-\infty, +\infty$. The moments and cumulants of order j of RV x_m are denoted by $\mu_{\mathbf{X}}(\mathbf{j})$ and $\chi_{\mathbf{X}}(\mathbf{j})$, respectively. The inverse function to CDF $C_{\mathbf{X}}(\mathbf{X})$ in (1) is denoted as $\widetilde{C}_{\mathbf{Y}}(\mathbf{P})$; that is,

if
$$P = C_{\mathbf{x}}(X)$$
, then $X = \widetilde{C}_{\mathbf{x}}(P)$ for $0 < P < 1$. (3)

As an example, consider narrowband filter outputs for which

$$\begin{split} p_{_{\mathbf{X}}}(\mathbf{u}) &= \exp(-\mathbf{u}) \quad \text{for } \mathbf{u} > 0 \ , \\ C_{_{\mathbf{X}}}(\mathbf{X}) &= 1 - \exp(-\mathbf{X}) \quad \text{for } \mathbf{X} > 0 \ , \\ f_{_{\mathbf{X}}}(\xi) &= (1 - \mathrm{i}\xi)^{-1} \quad \text{for all } \xi \ , \\ \widetilde{C}_{_{\mathbf{X}}}(\mathbf{P}) &= -\ln(1 - \mathbf{P}) \quad \text{for } 0 < \mathbf{P} < 1 \ , \\ \mu_{_{\mathbf{X}}}(\mathbf{j}) &= \mathbf{j}! \ , \ \chi_{_{\mathbf{X}}}(\mathbf{j}) = (\mathbf{j}-1)! \quad \text{for } \mathbf{j} \geq 1 \ . \end{split}$$

The scaling of RV $\mathbf{x}_{\mathbf{m}}$ in (4) has been taken such that its mean is 1. This is done solely for notational convenience; it will not affect the probabilities realized herein nor the required signal-to-noise ratios. However, it does influence the threshold settings calculated, which would have to be scaled for a different input noise level.

THRESHOLD RESETTING

A collection of IID RVs, $\{x_m\}$ for $0 \le m \le M$, is subject to a nonlinear transformation f, yielding output

$$y = f(x_0, x_1, \dots, x_M) . \qquad (5)$$

For example, a normalizer is characterized by

$$y = \frac{x_0}{\frac{1}{M}(x_1 + x_2 + \dots + x_M)}, \quad M \ge 1,$$
 (6)

while an or-ing device yields

$$y = \max(x_1, x_2, ..., x_M)$$
, $M \ge 1$. (7)

A combination of a normalizer and or-ing device will require a more general formulation; then we would use

$$x_{k} = \frac{w_{ko}}{\frac{1}{M} \sum_{m=1}^{M} w_{km}} \quad \text{for } 1 \le k \le K ,$$

$$y = \max(x_1, x_2, \dots, x_K) , \qquad (8)$$

where we need two parameters, M and K, and $\{w_{km}\}$ are K(M+1) IID RVs. Of course, then the K RVs $\{x_k\}$ are also IID.

Let $C_y(Y)$ be the CDF of RV y at the output of general nonlinearity f in (5). Choose threshold Y_1 such that specified cumulative probability P_1 is realized there; that is,

$$P_1 = C_y(Y_1)$$
 , or $Y_1 = \tilde{C}_y(P_1)$, (9)

where \tilde{C}_y is the inverse function to C_y . 1-P₁ is the false alarm probability at threshold Y₁. Also, choose additional thresholds $\{Y_t\}$ such that Y₁ < Y₂ < ··· < Y_T, for a total of T thresholds, with the largest one being

$$Y_{T} = Y_{1} A_{y}$$
, where $dB_{y} = 10 \log_{10}(A_{y})$ (10)

is a specified decibel value. Then take the remaining thresholds according to equal spacing rule

$$Y_t = Y_1 + \frac{Y_T - Y_1}{T - 1}(t - 1)$$
 for $1 \le t \le T$. (11)

The normalized thresholds for RV y are defined as

$$\underline{Y}_{t} = \frac{Y_{t} - \mu_{y}}{\sigma_{y}} \quad \text{for } 1 \le t \le T . \tag{12}$$

where $\boldsymbol{\mu}_{_{\boldsymbol{V}}}$ and $\boldsymbol{\sigma}_{_{\boldsymbol{V}}}$ are the mean and standard deviation of RV y.

Then compute the cumulative probabilities realized at these thresholds $\{Y_{\pm}\}$, namely

$$P_{t} = C_{y}(Y_{t}) \quad \text{for } 1 \le t \le T , \qquad (13)$$

and print out M, dB_y, μ_y , σ_y , T, $\{Y_t\}$, $\{Y_t\}$, $\{P_t\}$. The false alarm probabilities are $\{1-P_t\}$.

An alternative choice is to space the thresholds $\{Y_t\}$ equally in decibels. That is, defining

$$D_{t} = 10 \log_{10}(Y_{t}) \quad \text{for } 1 \le t \le T$$
 (14)

as the threshold in decibels, we take \mathbf{D}_1 as given in terms of \mathbf{Y}_1 and we take

$$D_{\mathbf{T}} = D_1 + dB_{\mathbf{y}} . \tag{15}$$

The intermediate decibel thresholds are then selected according to the equal spacing rule

$$D_{t} = D_{1} + \frac{D_{T} - D_{1}}{T - 1}(t - 1) \quad \text{for } 1 \le t \le T . \tag{16}$$

The power thresholds can then be evaluated as

$$Y_{t} = 10^{D_{t}/10}$$
 for 1 \leftleft t \leftleft T. (17)

The cumulative probabilities at these latter power thresholds follow from (13) as before.

Another possibility is to simply set the thresholds according to

$$Y_{t} = \mu_{y} + \sigma_{y} \underline{Y}_{t} \quad \text{for } 1 \le t \le T , \qquad (18)$$

where normalized thresholds $\{\underline{Y}_t\}$ are preset constants determined by the user. In this latter case, probability P_1 in (9) would not be realized at initial threshold $Y_1 = \mu_y + \sigma_y \underline{Y}_1$. In any event, the desired printouts are the quantities listed under (13).

Finally, we could set the thresholds such that preset values of probabilities $\{P_t\}$ are realized for all $1 \le t \le T$. That is, solve (13) for the thresholds according to

$$Y_t = \tilde{C}_y(P_t)$$
 for $1 \le t \le T$. (19)

This amounts to setting T different false alarm probabilities $\{1-P_{\mbox{\scriptsize t}}\} \, . \label{eq:constraints}$

ALTERNATIVE SIZE TRANSFORMATION

Now consider the new RV z obtained by changing the parameter value from M to N in the given nonlinear transformation in (5):

$$z = f(x_0, x_1, ..., x_N)$$
 (20)

N can be larger or smaller than M. Let the CDF of RV z be $C_z(Z)$. We now choose new thresholds, $\{Z_t\}$ for $1 \le t \le T$, such that the probabilities $\{P_t\}$ in (13) are maintained for RV z; that is, we choose thresholds $\{Z_t\}$ for RV z in (20) such that

$$C_z(Z_t) = P_t$$
, or $Z_t = \tilde{C}_z(P_t)$ for $1 \le t \le T$. (21)

These thresholds $\{Z_t\}$, to be employed for RV z, will not necessarily have equal spacing, as did the thresholds $\{Y_t\}$ in (11), for example, for RV y. The normalized thresholds for RV z are

$$\underline{z}_{t} = \frac{z_{t} - \mu_{z}}{\sigma_{z}} \quad \text{for } 1 \le t \le T , \qquad (22)$$

where μ_z and σ_z are the mean and standard deviation of RV z. Then print out N, dB_z, μ_z , σ_z , T, {Z_t}, {Z_t}, {P_t}, where

$$dB_z = 10 \log_{10}(z_T/z_1)$$
 (23)

DIFFERENT NUMBER OF THRESHOLDS

If RV z is to be subject to a different number, U, of thresholds than RV y was, it is not always reasonable to try to maintain the set of T probabilities $\{P_t\}$ realized in (13). (U can be larger or smaller than T.) One alternative is to maintain the edge probabilities P_1 and P_T according to (21), thereby determining values for Z_1 and Z_T . Then choose a different complete set of thresholds $\{Z_u\}$ for RV'z according to equal spacing rule

$$Z'_{u} = Z_{1} + \frac{Z_{T} - Z_{1}}{U - 1}(u - 1)$$
 for $1 \le u \le U$. (24)

We can then evaluate the cumulative probabilities at these latter threshold values as

$$P'_{u} = C_{z}(Z'_{u}) \quad \text{for } 1 \le u \le U . \tag{25}$$

Of course, $P'_1 = P_1$ and $P'_U = P_T$, since $Z'_1 = Z_1$ and $Z'_U = Z_T$. This also means that dB_z is still given by (23).

It must be noted that this change in philosophy, namely to maintain only edge probabilities P_1 and P_T , will not reduce to the earlier results when we set U = T here. The new thresholds in z, given by (24), are equally spaced even if U = T, whereas the former thresholds given by (21) are not.

Print out N, dB_z, μ_z , σ_z , U, $\{Z_u'\}$, $\{\underline{Z}_u'\}$, $\{P_u'\}$, where $\{\underline{Z}_u'\}$ are the normalized thresholds

$$\underline{Z'_{u}} = \frac{Z'_{u} - \mu_{Z}}{\sigma_{Z}} \quad \text{for } 1 \le u \le U . \tag{26}$$

SIGNAL-TO-NOISE RATIO REQUIREMENTS

Let us return to the original nonlinear transformation (5) characterized by parameter M. The CDF of RV y, with signal present in just one of the input RVs $\{x_m\}$, is denoted by $C_y(Y;R)$, where R is the input signal-to-noise ratio (SNR) in that particular x_m RV containing a signal. If we want this new CDF to realize a specified probability value S_1 at all the thresholds $\{Y_t\}$ in (11), the required SNRs $\{R_t\}$ must satisfy

$$S_1 = C_y(Y_t; R_t) \quad \text{for } 1 \le t \le T . \tag{21}$$

From (13) and (27), we know that

$$P_t = C_y(Y_t) = C_y(Y_t; 0)$$
 for $1 \le t \le T$. (28)

Therefore, specified probability \mathbf{S}_1 in (27) must satisfy

$$S_1 \leq P_t$$
 for $1 \leq t \leq T$, (29)

in order that nonnegative SNRs $\{R_t\}$ can result as solutions to (27). That is, each cumulative distribution value must be decreased from P_t to S_1 , meaning that each exceedance probability has been increased from false alarm probability value $1-P_t$ to detection probability value $Pd_1 = 1-S_1$. The actual determination of CDF $C_y(Y;R)$ will have to wait until after we have specified and analyzed the nonlinear transformations (5) of interest, for the case of noise-only present.

If several detection probabilities, like $Pd_1 = .5$, $Pd_2 = .9$, $Pd_3 = .99$, are specified, there will be a set of equations like (27) for each case, namely

$$1 - Pd_{j} = S_{j} = C_{y}(Y_{t}; R_{t})$$
 for $1 \le t \le T$; $j = 1, 2, 3$. (30)

STATISTICS OF NORMALIZER

Let RV y be obtained by means of a normalization procedure from IID RVs $\{x_m\}$, $0 \le m \le M$, according to transformation

$$y = \frac{x_0}{\frac{1}{M}(x_1 + \cdots + x_M)} \equiv \frac{x_0}{a} , \qquad (31)$$

where we assume that $x_m \ge 0$ for all m. The average RV, a, in the denominator of (31) has, respectively, CF and PDF

$$f_a(\xi) = [f_x(\xi/M)]^M,$$

$$p_a(u) = \frac{1}{2\pi} \int d\xi \, \exp(-iu\xi) \, [f_x(\xi/M)]^M$$
 (32)

The CDF of RV y in (31) is, using the statistical independence of \mathbf{x}_0 and a,

$$C_{y}(Y) = Prob(y < Y) = Prob(x_{0} < Ya) =$$

$$= \int_{0}^{\infty} dt \, p_{a}(t) \int_{0}^{Yt} du \, p_{x}(u) = \int_{0}^{\infty} dt \, p_{a}(t) \, C_{x}(Yt) . \tag{33}$$

The corresponding PDF of RV y is, upon differentiation,

$$p_{y}(u) = \int_{0}^{\infty} dt \ t \ p_{a}(t) \ p_{x}(ut)$$
 (34)

The moments of RV y can be found from a couple of forms:

$$\mu_{\mathbf{y}}(j) = \overline{\mathbf{y}^{j}} = \int_{0}^{\infty} d\mathbf{u} \ \mathbf{u}^{j} \ \mathbf{p}_{\mathbf{y}}(\mathbf{u}) =$$

$$= \overline{x_0^{j}} \overline{a^{-j}} = \mu_{x}(j) \mu_{a}(-j) = \int du u^{j} p_{x}(u) \times \int dt t^{-j} p_{a}(t) . (35)$$

Convergence of the last integral in (35) may not occur for larger values of j; that is, due to the division in (31), RV y may not have finite higher-order moments.

EXAMPLE

The example presented in (4) is utilized here. From (4) and (32), the CF and PDF of average RV a in (31) are

$$f_a(\xi) = \frac{1}{(1 - i\xi/M)^M}$$
 (36)

and

$$p_a(u) = \frac{M^M u^{M-1} \exp(-Mu)}{(M-1)!}$$
 for $u > 0$, (37)

respectively. The CDF of RV y then follows from (33) and (4) as

$$C_{y}(Y) = \int_{0}^{\infty} dt \frac{M^{M} t^{M-1} \exp(-Mt)}{(M-1)!} [1 - \exp(-Yt)] =$$

$$= 1 - \left(1 + \frac{Y}{M}\right)^{-M} \text{ for } Y > 0.$$
(38)

The PDF of RV y is therefore

$$p_{y}(u) = \left(1 + \frac{u}{M}\right)^{-M-1}$$
 for $u > 0$. (39)

The inverse function to CDF $C_{y}(Y)$ in (38) is

$$\tilde{C}_{V}(P) = M[(1 - P)^{-1/M} - 1]$$
 for $0 < P < 1$. (40)

The j-th moment of RV y is given by

$$\mu_{\mathbf{y}}(j) = \overline{\mathbf{y}^{j}} = \int du \ u^{j} \ p_{\mathbf{y}}(u) = \int_{0}^{\infty} du \ u^{j} \left(1 + \frac{u}{M}\right)^{-M-1} =$$

$$= M^{j+1} B(j+1,M-j) = M^{j+1} \frac{\Gamma(j+1) \Gamma(M-j)}{\Gamma(M+1)} = \frac{j! M^{j}}{(M-j)_{j}} \text{ for } j < M , (41)$$

where we used (39) and [1; 3.194 3 and 8.384 1]. In particular,

$$\overline{y} = \frac{M}{M-1}$$
, $\overline{y^2} = \frac{2M^2}{(M-2)(M-1)}$, $\sigma_y^2 = \frac{M^3}{(M-2)(M-1)^2}$ for $M > 3$. (42)

The condition M > 3 is necessary for RV y to possess a finite variance. We now have all the quantities required for application in the previous section on threshold resetting.

For $M = \infty$, $f_a(\xi)$ in (36) equals $\exp(i\xi)$; that is, RV a in (31) is equal to the constant 1. This corresponds to no normalization and, in fact, (31) reduces to $y = x_0$. Also, (38) - (41) reduces to (4), as expected.

CHANGE IN SIZE OF NORMALIZER

If we now change from size M to N in normalizer (31), we obtain RV z as considered in (20) and sequel. Its CDF follows, by similarity of form to (38), as

$$C_z(Z) = 1 - \left(1 + \frac{Z}{N}\right)^{-N}$$
 for $Z > 0$. (43)

Its inverse function is

$$\tilde{C}_{z}(P) = N[(1 - P)^{-1/N} - 1]$$
 for $0 < P < 1$. (44)

Reference to (42) also reveals that the mean and standard deviation of RV z are

$$\mu_z = \frac{N}{N-1}$$
, $\sigma_z = \frac{N}{N-1} \left(\frac{N}{N-2} \right)^{\frac{1}{2}}$ for $N > 3$. (45)

The new thresholds are given by (21) and (22).

STATISTICS OF OR-ING DEVICE

Let $\{x_m\}$, $1 \le m \le M$, be IID RVs with common PDF $p_x(u)$ and CDF $C_x(X)$. The CDF and PDF of the maximum RV

$$y = \max\{x_1, x_2, ..., x_M\}$$
, (46)

yielded by an or-ing device, are then

$$C_{\mathbf{v}}(Y) = \left[C_{\mathbf{x}}(Y)\right]^{\mathbf{M}}, \qquad (47)$$

$$p_{y}(u) = M [C_{x}(u)]^{M-1} p_{x}(u) ,$$
 (48)

respectively. The inverse function to CDF C_{y} in (47) is

$$\widetilde{C}_{y}(P) = \widetilde{C}_{x}(P^{1/M})$$
 for $0 < P < 1$. (49)

Here, again, \tilde{C}_x is the inverse function to CDF C_x of RV x_m . The CF of RV y follows from (48) as

$$f_{y}(\xi) = \int du \exp(i\xi u) M [C_{x}(u)]^{M-1} p_{x}(u)$$
 (50)

The moments of RV y may be obtained from (48) in the form

$$\mu_{y}(j) = \int du \ u^{j} \ M \left[C_{x}(u)\right]^{M-1} p_{x}(u) .$$
 (51)

Alternatively, the cumulants can be obtained by a power series expansion of the natural logarithm of CF $f_y(\xi)$ in (50).

EXAMPLE

We again use the results given in (4). Substitution into (50) yields

$$f_{y}(\xi) = \int_{0}^{\infty} du \exp(i\xi u - u) M [1 - \exp(-u)]^{M-1} =$$
1

$$= M \int_{0}^{1} dt t^{-i\xi} (1-t)^{M-1} = \frac{\Gamma(1-i\xi) \Gamma(M+1)}{\Gamma(M+1-i\xi)} =$$

$$= \left[\frac{M}{m=1} \left(1 - \frac{i\xi}{m} \right) \right]^{-1} , \qquad (52)$$

where we let $t = \exp(-u)$ and used [1; 8.380 1 and 8.384 1]. This is a very compact form and is easily computed numerically, if necessary. This result illustrates that RV y has the same statistics as RV w defined by

$$w \equiv \sum_{m=0}^{M} \frac{x_m}{m} = x_1 + \frac{1}{2}x_2 + \cdots + \frac{1}{M}x_M.$$
 (53)

In order to determine the cumulants of RV y, we consider

$$\ln f_{y}(\xi) = -\sum_{m=1}^{M} \ln(1 - \frac{i\xi}{m}) = \sum_{m=1}^{M} \sum_{k=1}^{\infty} \frac{1}{k} (\frac{i\xi}{m})^{k}$$
 (54)

The cumulants follow immediately as

$$\chi_{y}(j) = (j-1)! \sum_{m=1}^{M} \frac{1}{m^{j}} \text{ for } j \ge 1.$$
 (55)

In particular, the mean and variance of RV y are

$$\mu_{y} = \chi_{y}(1) = \sum_{m=1}^{M} \frac{1}{m}, \quad \sigma_{y}^{2} = \chi_{y}(2) = \sum_{m=1}^{M} \frac{1}{m^{2}},$$
 (56)

respectively. It is seen that the mean of RV y increases without limit, in fact, logarithmic with M. On the other hand, the variance saturates at $\pi^2/6$, meaning that the standard deviation σ_y of RV y cannot exceed $\pi/6^{\frac{1}{2}} = 1.283$.

The CDF of y follows from (47) and (4) as

$$C_{V}(Y) = [1 - \exp(-Y)]^{M} \text{ for } Y > 0$$
, (57)

with corresponding inverse function

$$\tilde{C}_{y}(P) = -\ln(1 - P^{1/M})$$
 for $0 < P < 1$. (58)

For M=1, there is no or-ing, and (46) reduces to $y=x_1$. Also, (52), (55), (57), and (58) reduce to (4), as expected.

CHANGE IN SIZE OF OR-ING DEVICE

If we change from size M to N in or-ing device (46), we obtain RV z considered in (20) and sequel. Its CDF is, by similarity in form to (57),

$$C_z(Z) = [1 - \exp(-Z)]^N \text{ for } Z > 0.$$
 (59)

The corresponding inverse function is

$$\tilde{C}_{z}(P) = -\ln(1 - P^{1/N})$$
 for $0 < P < 1$. (60)

Reference to (56) reveals that the mean and variance of RV z are given by

$$\mu_z = \sum_{n=1}^{N} \frac{1}{n} , \qquad \sigma_z^2 = \sum_{n=1}^{N} \frac{1}{n^2} .$$
 (61)

The new thresholds for RV z are given by (21) and (22).

STATISTICS OF NORMALIZER AND OR-ING DEVICE

Here, we consider a set of K(M+1) IID RVs $\{w_{km}\}$ subject to both normalization and or-ing, according to

$$a_k = \frac{1}{M} \sum_{m=1}^{M} w_{km}, \quad x_k = \frac{w_{k0}}{a_k} \text{ for } 1 \le k \le K,$$
 (62)

$$y = \max(x_1, x_2, \dots, x_K) . \tag{63}$$

The statistics of the normalization portion, namely $\{x_k\}$ for $1 \le k \le K$, were previously considered in (31) - (35) for the general case, and then specialized to an example in (36) - (42). Also, the analysis of the or-ing portion was conducted in (46) - (51) and then specialized to an example in (52) - (58). We will rely heavily on those results in order to minimize the presentation in this section.

EXAMPLE

We presume that all the input RVs $\{w_{km}\}$ in (62) have the common exponential PDF used in example (4) for all the earlier results here. Then, by reference to (31) and (39), we can state that the common PDF of RVs $\{x_k\}$ defined in (62) is

$$p_{x}(u) = \left(1 + \frac{u}{M}\right)^{-M-1}$$
 for $u > 0$. (64)

Similarly, the CDF of RVs $\{x_k\}$ follows, by reference to (38), as

$$C_{X}(X) = 1 - \left(1 + \frac{X}{M}\right)^{-M} \quad \text{for } X > 0 .$$
 (65)

The CDF of RV y defined in (63) is then

$$C_{Y}(Y) = [C_{X}(Y)]^{K} = \left[1 - \left(1 + \frac{Y}{M}\right)^{-M}\right]^{K}$$
 for $Y > 0$. (66)

Its inverse function follows readily as

$$\tilde{C}_{y}(P) = M[(1 - P^{1/K})^{-1/M} - 1] \text{ for } 0 < P < 1.$$
 (67)

The PDF of RV y can be obtained by differentiation of (66):

$$p_{y}(u) = K \left[C_{x}(u)\right]^{K-1} p_{x}(u) =$$

$$= K \left[1 - \left(1 + \frac{u}{M}\right)^{-M}\right]^{K-1} \left(1 + \frac{u}{M}\right)^{-M-1} \text{ for } u > 0.$$
(68)

The j-th moment of RV y can be found from the integral

$$\mu_{\mathbf{Y}}(j) = \int_{0}^{\infty} d\mathbf{u} \ \mathbf{u}^{j} \ \mathbf{p}_{\mathbf{Y}}(\mathbf{u}) \quad \text{for } j < M .$$
 (69)

where we have taken advantage of the fact that RV y can never be negative. However, a useful alternative in some cases is afforded by employing integration by parts on (69), with the result, for j \geq 1, that

$$\mu_{\mathbf{y}}(j) = j \int_{0}^{\infty} du \ u^{j-1} [1 - C_{\mathbf{y}}(u)],$$
 (70)

where we assume that

$$\lim_{u \to +\infty} u^{j} [1 - C_{y}(u)] = 0 . \tag{71}$$

This requirement is tantamount to presuming that the j-th moment $\mu_{\mathbf{V}}(\mathbf{j})$ exists, that is, j \leq M.

When we use CDF (66) for RV y, then j-th moment (70) becomes

$$\mu_{\mathbf{Y}}(j) = j \int_{0}^{\infty} du \ u^{j-1} \left\{ 1 - \left[1 - \left[1 + \frac{u}{M} \right]^{-M} \right]^{K} \right\}.$$
 (72)

In order to evaluate this integral, let, for the moment,

$$Q = \left(1 + \frac{u}{M}\right)^{-M} . \tag{73}$$

Then, the bracketed term in (72) can be expanded according to

$$[1 - Q]^{K} = \sum_{k=0}^{K} {K \choose k} (-Q)^{k} = 1 + \sum_{k=1}^{K} (-1)^{k} {K \choose k} \left(1 + \frac{u}{M}\right)^{-Mk} . (74)$$

Employment of this result in (72) yields

$$\mu_{y}(j) = j \int_{0}^{\infty} du \ u^{j-1} \sum_{k=1}^{K} (-1)^{k-1} {K \choose k} \left(1 + \frac{u}{M}\right)^{-Mk} =$$

$$= j \sum_{k=1}^{K} (-1)^{k-1} {K \choose k} \int_{0}^{\infty} du \ u^{j-1} \left(1 + \frac{u}{M}\right)^{-Mk} =$$

$$= j! M^{j} \sum_{k=1}^{K} {K \choose k} \frac{(-1)^{k-1}}{(Mk-j)_{j}} \text{ for } 1 \le j < M , \qquad (75)$$

where we employed [1; 3.194 3 and 8.384 1] and simplified the end result. For K = 1, (75) reduces to (41), as it must.

The first two moments for RV y follow readily from (75) as

$$\mu_{\mathbf{Y}}(1) = M \sum_{k=1}^{K} {K \choose k} \frac{(-1)^{k-1}}{Mk-1}$$
 (76)

and

$$\mu_{\mathbf{Y}}(2) = 2M^2 \sum_{k=1}^{K} {K \choose k} \frac{(-1)^{k-1}}{(Mk-2)(Mk-1)} \quad \text{for } M > 2 .$$
 (77)

Both of these results are easily computed by means of recurrences; however, a bad feature of these two sums is that they are alternating series and lose significance for large K due to the binomial coefficient which gets very large. A backup procedure is to revert to numerical integration of (68) - (69) or (70) - (72), both of which integrands can never go negative and which decay as u^{j-1-M} for large u.

However, better alternatives to the first and second moments have been found, that are not subject to cancellation and loss of significance. Namely, it is shown in appendix A that

$$\mu_{y}(1) = M[F_{1} - 1] , \quad \sigma_{y} = M[F_{2} - F_{1}^{2}]^{\frac{1}{2}} , \quad (78)$$

where

$$F_1 = \prod_{k=1}^{K} \left\{ \frac{k}{k - \frac{1}{M}} \right\}, \qquad F_2 = \prod_{k=1}^{K} \left\{ \frac{k}{k - \frac{2}{M}} \right\} \text{ for } M > 2.$$
 (79)

These finite products are very useful and retain significance even for large K, where (76) and (77) are useless. The very compact BASIC program listed below computes both quantities in (78). The program has been written so as to avoid overflow, even when K is large.

By using the techniques in appendix A and laboriously expanding out (75) for j = 3, it has been found that

$$\mu_{\mathbf{v}}(3) = M^3(F_3 - 3F_2 + 3F_1 - 1)$$
,

where we define products

$$F_{m} = \prod_{k=1}^{K} \left\{ \frac{k}{k - \frac{m}{M}} \right\} \quad \text{for } 0 \le m < M .$$

Notice that $F_0 = 1$. Based on this result and (78), we conjectured that the j-th moment is generally given by

$$\mu_{\mathbf{y}}(j) = \mathbf{M}^{j} \sum_{n=0}^{j} (-1)^{n} {j \choose n} \mathbf{F}_{j-n}$$
 for $j < \mathbf{M}$.

In fact, this has been confirmed numerically for several values of M, K, and j. For large j, the alternating character of this series would also suffer from loss of significance; however, for the low order moments of general interest, this is not a problem.

The third and fourth cumulants of RV y were also computed in terms of sequence $\{F_n\}$; they turned out to be

$$\chi_{\mathbf{v}}(3) = M^{3}[F_{3} - 3F_{2}F_{1} + 2F_{1}^{3}]$$
,

$$\chi_{V}(4) = M^{4} \left[F_{4} - 4F_{3}F_{1} - 3F_{2}^{2} + 12F_{2}F_{1}^{2} - 6F_{1}^{4} \right]$$
.

But these rules for obtaining cumulants $\{\chi_{\mathbf{y}}(j)\}$ from products $\{F_n\}$ are <u>identical</u> to the general rules for obtaining cumulants from moments, within the factor M^j ; see, for example, $\{4; \text{ page 70, (3.41)}\}$. Thus, we have a very efficient and accurate method for obtaining the low-order cumulants directly from the finite products $\{F_n\}$. The case for $\chi_{\mathbf{y}}(1)$ in (78) differs slightly from the usual rule, in the need to subtract 1.

ANALYTICAL CHECKS

Numerous checks on the results above are possible. When $M = \infty$ (no normalization), the CDF of y in (66) reduces to (57), where it must be remembered that K in this section on combined normalization and or-ing corresponds to M in the section on or-ing alone. On the other hand, if K = 1 (no or-ing) in (66), the result in (38) correctly emerges.

With regard to the inverse CDF in (67), it reduces to (58) for $M = \infty$, whereas it reduces to (40) for K = 1. The PDF of RV y, given in (68), reduces to the derivative of (57) for $M = \infty$, whereas it reduces to (39) for K = 1. Finally, the first two moments in (78) - (79) reduce, after some manipulations, to (56) for $M = \infty$; on the other hand, the j-th moment for K = 1 is best handled from form (75) which correctly reduces to (41).

EXTENSIONS

The case where the normalizer and or-ing device are followed by an averager is discussed in the summary below, and the method of determining the performance of that system is outlined. Another alternative with practical merit is that of normalization followed by averaging and or-ing. Since the CF of the normalizer output is available by a Fourier transform of (39), it can be raised to a power to find the CF at the averager output. Then another Fourier transform can yield the CDF. At this point, we could utilize (47) to find the CDF of the system output.

CHANGES IN SIZES OF NORMALIZER AND OR-ING DEVICE

We now address the change in size of the normalizer in (62) from size M to N and the change in size of the or-ing device in (63) from K to L. There are no restrictions on the relative sizes of the parameters. The new equations are

$$b_k = \frac{1}{N} \sum_{n=1}^{N} w_{kn}$$
, $y_k = \frac{w_{k0}}{b_k}$ for $1 \le k \le L$, (81)

$$z = \max(y_1, y_2, \dots, y_L) . \tag{82}$$

The CDF of RV z follows, by similarity of form to (66), as

$$C_{z}(Z) = \left[1 - \left(1 + \frac{Z}{N}\right)^{-N}\right]^{L} \quad \text{for } Z > 0 .$$
 (83)

The inverse function is easily shown to be

$$\tilde{C}_{z}(P) = N[(1 - P^{1/L})^{-1/N} - 1] \text{ for } 0 < P < 1.$$
 (84)

The first two moments of RV z in (82) are given, by comparison with (78) and (79), as

$$\mu_z(1) = N[G_1 - 1] , \quad \sigma_z = N(G_2 - G_1^2)^{\frac{1}{2}} ,$$
 (85)

where

$$G_1 = \prod_{k=1}^{L} \left\{ \frac{k}{k - \frac{1}{N}} \right\}, \qquad G_2 = \prod_{k=1}^{L} \left\{ \frac{k}{k - \frac{2}{N}} \right\}.$$
 (86)

INPUT SIGNAL-TO-NOISE RATIO REQUIREMENTS

In this section, we will determine the CDFs of the outputs of the three nonlinear systems considered above, namely (31), (46), and (62) - (63), for the case where a signal is present in one of the input RVs. This will enable us to use the results given in (27) - (29) for determination of required input SNRs for a specified system detection probability $Pd_1 = 1-S_1$.

NORMALIZER

The nonlinear transformation of immediate interest is the normalizer given by (31). The PDF of denominator average RV a is given by (37), while the PDF of numerator RV \mathbf{x}_0 with signal present will be modified from (4) to the form

$$p_{X}(u;R) = \frac{1}{1+R} \exp\left(\frac{-u}{1+R}\right) \quad \text{for } u > 0 , \qquad (87)$$

where R is the input power SNR. The corresponding CDF is

$$C_X(X;R) = 1 - \exp\left(\frac{-X}{1+R}\right) \text{ for } X > 0$$
 (88)

By reference to (33), (38), and (88), we find the CDF of RV y in (31) for signal present to be

$$C_{\mathbf{y}}(Y;R) = \int_{0}^{\infty} dt \frac{M^{M} t^{M-1} \exp(-Mt)}{(M-1)!} \left[1 - \exp\left(\frac{-Yt}{1+R}\right)\right] =$$

$$= 1 - \left(1 + \frac{Y/M}{1+R}\right)^{-M} \quad \text{for } Y > 0 . \tag{89}$$

We now employ this result in (27) to obtain

$$S_1 = 1 - \left(1 + \frac{Y_t/M}{1+R_t}\right)^{-M}$$
 for $1 \le t \le T$. (90)

The solution for the required input SNR R_{t} is then given by

$$R_{t} = \frac{Y_{t}/M}{(1 - S_{1})^{-1/M} - 1} - 1 \quad \text{for } 1 \le t \le T.$$
 (91)

We must repeat here the caution mentioned in (29), namely that specified probability S_1 at threshold Y_t must be less than or equal to probabilities $\{P_t\}$ in order that nonnegative SNRs $\{R_t\}$ result in (91). This is reasonable since it corresponds physically to demanding a larger detection probability when signal is present than when absent.

OR-ING DEVICE

Here, we are interested in the or-ing device characterized by (46) when signal is present in one of the RVs $\{x_m\}$. The CDF of RV y is then given by

$$C_{Y}(Y;R) = C_{X}(Y;R) [C_{X}(Y)]^{M-1} =$$

$$= \left[1 - \exp\left(\frac{-Y}{1+R}\right)\right] [1 - \exp(-Y)]^{M-1} \text{ for } Y > 0 , \qquad (92)$$

where we used (88) and (4).

If we now employ (92) in (27), we have to satisfy

$$S_1 = \left[1 - \exp\left(\frac{-Y_t}{1+R_t}\right)\right] \left[1 - \exp\left(-Y_t\right)\right]^{M-1} \text{ for } 1 \le t \le T. \quad (93)$$

The solution for the required input SNR is given by

$$R_t = \frac{Y_t}{-\ln(1-S_1/Q_t)} - 1$$
 for $1 \le t \le T$, (94)

where

$$Q_{t} = \left[1 - \exp\left(-Y_{t}\right)\right]^{M-1} \quad \text{for } 1 \le t \le T.$$
 (95)

Again, (29) must be satisfied.

NORMALIZER AND OR-ING DEVICE

The nonlinear transformation to be investigated here is the combination of normalization and or-ing, as characterized by (62) and (63), when signal is present only in RV w_{10} . Therefore, only RV x_1 in (63) contains signal.

The CDFs of RVs $\{x_k\}$, for $2 \le k \le K$, are given by (65). On the other hand, the CDF for x_1 is available by reference to (89), in the form

$$C_X(X;R) = 1 - \left(1 + \frac{X/M}{1+R}\right)^{-M}$$
 for $X > 0$. (96)

Therefore, the CDF for RV y in (63) is given by

$$C_{\mathbf{y}}(Y;R) = C_{\mathbf{x}}(Y;R) [C_{\mathbf{x}}(Y)]^{K-1} =$$

$$= \left[1 - \left(1 + \frac{Y/M}{1+R}\right)^{-M}\right] \left[1 - \left(1 + \frac{Y}{M}\right)^{-M}\right]^{K-1}$$
 for $Y > 0$, (97)

where we used (96) and (65).

When we equate this result to the specified probability \mathbf{S}_1 according to (27), we obtain

$$S_{1} = \left[1 - \left(1 + \frac{Y_{t}/M}{1+R_{t}}\right)^{-M}\right] \left[1 - \left(1 + \frac{Y_{t}}{M}\right)^{-M}\right]^{K-1}$$
 for $1 \le t \le T$. (98)

The solution for the required input SNRs $\{R_t\}$ is given by

$$R_{t} = \frac{Y_{t}/M}{(1 - S_{1}/Q_{t})^{-1/M} - 1} - 1 \quad \text{for } 1 \le t \le T , \qquad (99)$$

where

$$Q_{t} = \left[1 - \left(1 + \frac{Y_{t}}{M}\right)^{-M}\right]^{K-1}$$
 for $1 \le t \le T$. (100)

Restriction (29) must be satisfied here also.

Finally, if several detection probabilities Pd_1 , Pd_2 , Pd_3 , are of interest, we must satisfy (30), where

$$\max\{1-P_{t}\} \leq \min\{Pd_{j}\}. \tag{101}$$

As checks on the results in this subsection on combined normalization and or-ing, we observe for $M = \infty$ (that is, no normalization), (100) reduces to (95), where K here corresponds to M there for or-ing alone. Also, (99) reduces to (94). On the other hand, for finite M, but with K = 1 (that is, no or-ing), then (100) reduces to $Q_+ = 1$, in which case (99) reduces to (91).

SUMMARY

We have determined the false alarm and detection probabilities for three different nonlinear transformations, namely a normalizer, an or-ing device, and a normalizer followed by or-ing. In particular, results are given for the following statistics of the outputs of each device: the PDF, the CDF, the inverse CDF, and either the moments or the cumulants (depending on their relative tractability). These results are sufficient to compute the receiver operating characteristics (ROCs) of the processors, if desired. However, we have also been able to solve explicitly for the input SNR required to realize specified false alarm and detection probabilities; this largely circumvents the need to compute ROCs.

Two programs, with numerical examples of their execution, are listed in appendix B. The first corresponds to the case where the number T of thresholds is kept fixed as the size of the nonlinear transformation is changed from M to N; see (20) - (23). On the other hand, the second program allows the number of thresholds to change from T to U as the size of the nonlinear transformation is changed from M to N; see (24) - (26).

Both programs are written for the general case where there is both normalization (of size M) and or-ing (of size K) included in the data processing; see (62) - (63). By making M infinite, the program will handle the case of or-ing alone; on the other hand, by setting K = 1, the program addresses the case of normalization alone. Thus, these two programs cover all the cases addressed in

this investigation. (Since it is not possible to actually set M infinite in a program, this situation is handled by setting M to any value less than or equal to 2, in order to flag this case in the program, and then branching appropriately at various points in the program. The substitute equations for this case of infinite M come, of course, from the earlier analysis for or-ing alone. For finite variance, normalization requires M > 2; see, for example, (77) or (79).)

We have not included the effects of averaging after the normalization and/or or-ing in this study. Hence, the required input SNRs calculated here sometimes turn out to be rather large. The exact analysis including averaging would be rather involved, since the new decision variable would have a characteristic function given by a power of the characteristic function $f_{\gamma}(\xi)$ of current output variable y; that is, from (68),

$$f_{y}(\xi) = K \int_{0}^{\infty} du \exp(i\xi u) \left[1 - \left(1 + \frac{u}{M}\right)^{-M}\right]^{K-1} \left(1 + \frac{u}{M}\right)^{-M-1}$$
 (102)

This is probably best handled through the use of fast Fourier transforms. The integrand decays as u^{-M-1} for large u, which is attractive since M, the normalization size, is generally fairly large in order to guarantee decent performance.

In the meantime, in order to get a rather rough idea of the improvement attainable by employment of averaging, it is suggested that the rule of thumb [3; (C-10)] for the input signal-to-noise ratio improvement in dB, -5 log A, be used, where A is the number of independent quantities averaged.

APPENDIX A. SIMPLIFICATION OF SUMS (76) AND (77)

Here, we will convert the alternating series in (76) and (77) into finite products that retain significance, even for large values of K. We begin with the first line of (52) and expand the power term in a binomial series, obtaining

$$f_{Y}(\xi) = M \int_{0}^{\infty} du \exp(i\xi u - u) \sum_{k=0}^{M-1} (-1)^{k} {M-1 \choose k} \exp(-ku) =$$

$$= M \sum_{k=0}^{M-1} {M-1 \choose k} \frac{(-1)^k}{k+1-i\xi} . \qquad (A-1)$$

Now, equate (A-1) to its alternative expression in the last line of (52), and then replace M everywhere by K+1, getting

$$(K+1)$$
 $\sum_{k=0}^{K} {K \choose k} \frac{(-1)^k}{k+1-i\xi} = \prod_{k=1}^{K+1} \left(\frac{k}{k-i\xi}\right)$. (A-2)

Now let $z = 1 - i\xi$ in (A-2) and simplify; there follows

$$\sum_{k=0}^{K} {K \choose k} \frac{(-1)^k}{k+z} = \frac{K!}{(z)_{K+1}}.$$
 (A-3)

Thus, the alternating series has been converted into a finite product which is useful for all values of K without loss of significance.

The use of (A-3) on (76) yields the result quoted in (78) and (79) for the first moment $\mu_{y}(1)$. On the other hand, in order to convert (77), it is necessary to take the preliminary step of breaking the rational function into two parts according to

$$\frac{1}{(k-b)(k-a)} = \frac{1}{b-a} \left[\frac{1}{k-b} - \frac{1}{k-a} \right] ,$$
 (A-4)

and then to use (A-3) once with z=-1/M and once with z=-2/M. After manipulation, simplification, and cancellation of common terms with the square of $\mu_{\bf y}(1)$, the end result for the standard deviation of RV y is found to be just the second term in (78). The results in (78) - (79) have been numerically checked with the original defining integral (72), for ${\bf j}=1$ and ${\bf j}=2$, for several values of M and K; they agree within the accuracy of the computer employed.

A more general result than (A-3) is available by means of a different approach. First, for general values of a, note that

$${a \choose k} = \frac{(-1)^k (-a)_k}{k!} , \qquad \frac{1}{k+z} = \frac{1}{z} \frac{(z)_k}{(z+1)_k} . \qquad (A-5)$$

Then, the following alternating sum can be manipulated into a more useful form, namely

$$\sum_{k=0}^{\infty} {a \choose k} \frac{(-1)^k}{k+z} = \frac{1}{z} \sum_{k=0}^{\infty} \frac{(-a)_k (z)_k}{(z+1)_k k!} = \frac{1}{z} F(-a,z;z+1;1) = \frac{\Gamma(1+a) \Gamma(z)}{\Gamma(1+a+z)},$$
(A-6)

where we used [2; 15.1.1 and 15.1.20]. If we set a = K in (A-6), it reduces to (A-3). (A-6) is also equal to B(1+a,z).

APPENDIX B. PROGRAMS

There are two programs listed in this appendix, both in BASIC for the Hewlett-Packard 9000 computer. None of the variables are declared INTEGER; thus, for example, input parameters M, K, N, L are all treated as REAL variables throughout.

The first program, listed on pages 42 - 44, requires that the number of thresholds T be maintained the same when the sizes, M and K, of the normalizer and or-ing device, respectively, are changed to N and L. On the other hand, the second program, listed on pages 46 - 49, allows the number of thresholds to change from T to U, which can be either larger or smaller.

The listings are heavily keyed to the explicit equations in the main text; this should enable the user to identify and modify particular manipulations if desired. It should be noted that, in the programs, the or-ing size begins at value K and gets changed to L. If these results are to be compared with the or-ing only results in the text, where the parameter M was used, it is necessary to make the switch from K in the program to M in the text. Example outputs from both programs are presented after the listing for each case.

```
! NORMALIZER & ORING, EQUISPACED IN POWER, SAME NO. OF THRESHOLDS
10
                                   SPECIFIED PROBABILITY, (9)
20
       P1=.85
                                1
30
       Dby=10
                                    DECIBEL RATIO OF THRESHOLDS, (10)
40
       T = 7
                                    NUMBER OF THRESHOLDS, (10)
       M = 0
50
                                    INITIAL NORMALIZER SIZE > 2, (62)
 60
     ! FOR NO INITIAL NORMALIZATION, THAT IS, M INFINITE, SET M <= 2
70
       K = 1.2
                                 ļ
                                    INITIAL OR-ING SIZE > 0, (63)
80
       N=16
                                    NEW HORMALIZER SIZE > 2, (81)
     ! FOR NO NEW NORMALIZATION, THAT IS, N INFINITE, SET N <= 2
90
                                1
100
                                    NEW OR-ING SIZE > 0, (82)
                                 ŀ
                                    SPECIFIED
110
       Pd1=.5
       Pd2=.9
                                     DETECTION
120
130
       Pd3=.99
                                 Ţ
                                      PROBABILITIES, (30)
                                                  T ="; T
       PRINT "P1 =";P1;"
                               Dby ="; Dby;"
140
       PRINT "M =";M;"
                                K =";K;"
                                                  N =";N;"
150
160
       REDIM Y(1:T), Yb(1:T), P(1:T), Z(1:T), Zb(1:T)
170
       DIM Y(99), Yb(99), P(99), Z(99), Zb(99)
       Rk = 1 \times K
180
                                 Ţ
                                   (67)
                                 ļ
                                    (84)
190
       R1=1/L
200
       IF M>2 THEN 300
210
       F1 = F2 = 0
                                    M INFINITE
220
       FOR Ms=1 TO K
                                    (56), m
       R1 = 1 / Ms
230
240
       F1=F1+R1
250
       F2=F2+R1*R1
260
       NEXT Ms
270
       Muy=F1
                                    (56)
                                    (56)
280
       Sigy=SQR(F2)
290
       GOTO 390
                                    M \rightarrow 2
300
       R1=1/M
310
       R2=2/M
       F1=F2=1
320
       FOR Ks=1 TO K
                                    (79), k
330
       F1=F1*Ks/(Ks-R1)
                                 1
                                    (79)
340
                                    (79)
350
       F2=F2*Ks/(Ks-R2)
360
       NEXT Ks
370
       Muy=M*(F1-1)
                                    (78)
       Sigy=M*SQR(F2-F1*F1)
                                    (78)
380
390
       IF N>2 THEN 490
400
       G1=G2=0
                                 ŧ
                                    N INFINITE
410
       FOR NS=1 TO L
                                    (61), n
420
       R1=1/Hs
430
       G1=G1+R1
440
       G2=G2+R1*R1
450
       NEXT Hs
                                    (61)
460
       Muz=G1
                                    (61)
470
       Sigz=SQR(G2)
       GOTO 580
480
490
       R1=1/H
                                    N > 2
       R2=2/N
500
510
       G1=G2=1
       FOR Ks=1 TO L
                                    (86), k
520
530
       G1=G1*Ks/(Ks-R1)
                                    (86)
540
       G2=G2*Ks/(Ks-R2)
                                    (86)
550
       HEXT Ks
                                    (85)
560
       Muz=N*(G1-1)
                                    (85)
570
        Sigz=N*SQR(G2-G1*G1)
                                      Sigy =";Sigy
       PRINT "Muy =":Muy:"
580
       PRINT "Muz ="; Muz; "
                                      Sigz =":Sigz
590
600
       PRINT
```

```
! EQUISPACED IN DECIBELS: REMOVE 880-970 AND INSERT 620-710
610
620
     ! R=1-P1^Rk
                               ! (9) & (67)
630
    ! IF M>2 THEN 660
640
     ! Y1=-L0G(R)
                                   (58)
650
     ! GOTO 670
660
     -!-Y1=M*(R^(-1/M)-1)
                                   (57)
670
     ! D1=10*LGT(Y1)
                                   (14)
688
     ! Deld=Dby/(T-1)
                                1
                                   (15) & (16)
     ! FOR Ts=1 TO T
690
                                1
                                   (16), t
700
     ! Dt=Di+Deld*(Ts-i)
                                   (16)
710
      ! Y(Ts)=Y=10^(Dt/10)
                                ļ
                                   (17)
      ! PRESET CONSTANTS: REMOVE 880-980 AND INSERT 730-760
728
     ! DATA 1,3,5,7,9,10,11
730
                              į.
                                   USER MUST INPUT I NUMBERS
     ! READ Yb(*)
740
                                   NORMALIZED Y THRESHOLDS
750
     ! FOR Ts=1 TO T
                                   (18), t
760
     ! Y(Ts)=Y=Muy+Siqy*Yb(Ts)!
                                   (18)
      ! PRESET PROBABILITIES: REMOVE 880-1030 AND INSERT 780-870
780
      ! DATA .9,.99,.999,.99999,.999999,.9999999
790
                               ! (19)
     ! READ P(*)
     ! FOR Ts=1 TO T
800
                                ! (19), t
810
      ! P=P(Ts)
 820
     ! R=1-P^Rk
                                   (58)
830
     ! IF M>2 THEN 860
840
    ! Y(Ts)=Y=-LOG(R)
                                   (58)
850
     ! GOTO 870
     ! Y(Ts)=Y=M*(R^(-1/M)-1) ! (9) & (67)
      ! Yb(Ts)=(Y-Muy)/Sigy
 870
                               ! (12)
880
        R=1-P1^Rk
                                ١
                                   (9) & (67)
        IF M>2 THEN 920
898
900
        Y1=-LOG(R)
                                   (58)
910
        GOTO 930
920
        Y1=M*(R^(-1/M)-1)
                                ļ
                                   (67)
        Av=10^(Dby/10)
930
                                ļ
                                   (10)
940
        Ytc=Y1*Ay
                                   (10)
950
        Dely=(Ytc-Y1)/(T-1)
                                   (11)
960
        FOR Ts=1 TO T
                                   (11), t
970
        Y(Ts)=Y=Y1+Dely*(Ts-1)!
                                   \langle 11 \rangle
 980
        Yb(Ts)=(Y-Muy)/Sigy
                                ļ
                                   (12)
990
        IF M>2 THEN 1020
1000
        R=EXP(-Y)
                                   (57)
1010
        GOTO 1030
1020
        R=(1+Y/M)^(-M)
                                1
                                   (13) & (66)
1030
        P(Ts)=P=(1-R)^K
                                   (66)
1040
        Q=1-P^R1
                                   (84)
1050
        IF N>2 THEN 1080
1060
        Z(Ts)=Z=-LOG(Q)
                                   (21) & (60)
1070
        GOTO 1090
1080
        Z(Ts)=Z=H*(Q\wedge(-1/H)-1)!
                                   (21) & (84)
        Zb(Ts)=(Z-Muz)/Sigz
1090
                                   (22)
1100
        NEXT Ts
1110
        Dbz=10*LGT(Z(T)/Z(1)) | (23)
        PRINT " Y THRESHOLDS
1120
                                      NORMALIZED
                                                          PROBABILITIES"
        FOR Ts=1 TO T
1130
1140
        PRINT Y(Ts), Yb(Ts), P(Ts)
        HEXT TS
1150
1160
        PRINT
1170
        PRINT " Z THRESHOLDS
                                      NORMALIZED
                                                           PROBABILITIES"
1180
        FOR Ts=1 TO T
1190
        PRINT Z(Ts), Zb(Ts), P(Ts)
1200
        NEXT TS
1210
        PRINT
1220
        PRINT "Dbz ="; Dbz
```

```
1230
        PRINT
1240
        PRINT " Pd1 =";Pd1;"
                                         Pd2 =";Pd2;"
                                                                 Pd3 =":Pd3
1250
        PRINT
        PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION:"
1260
1270
        IF M>2 THEN 1400
1280
        FOR Ts=1 TO T
                                 ! (94), t
1290
        Y=Y(Ts)
1300
        Q=(1-EXP(-Y))^(K-1)
                                   (95)
1310
        D1=-LOG(1-(1-Pd1)/Q)
                                   (94)
1320
        Rt 1=Y/D1-1
                                    (94)
1330
        D2 = -LOG(1 - (1 - Pd2)/Q)
1340
        Rt2=Y/D2-1
1350
        D3=-L0G(1-(1-Pd3)/Q)
1360
        Rt3=Y/D3-1
1370
        PRINT 10*LGT(Rt1), 10*LGT(Rt2), 10*LGT(Rt3)
1380
        NEXT TS
        GOTO 1530
1390
                                   (99)
1400
        Rm=-1/M
        FOR Ts=1 TO T
1410
                                    (99), t
        Ym=Y(Ts)/M
                                    (99) & (100)
1420
1430
        Q = (1 + Ym) \wedge (-M)
                                    (100)
1440
        Q = (1 - Q) \wedge (K - 1)
                                    (100)
        D1 = (1 - (1 - Pd1)/Q) \land Rm - 1
                                    (99)
1456
1460
        Rt1=Ym/D1-1
                                    (99)
1470
        D2=(1-(1-Pd2)/Q)^Rm-1
1480
        Rt 2=Ym/D2-1
1490
        D3 = (1 - (1 - Pd3)/Q) \land Rm - 1
1500
        Rt3=Ym/D3-1
        PRINT 10*LGT(Rt1), 10*LGT(Rt2), 10*LGT(Rt3)
1510
        NEXT Ts
1520
1530
        PRINT
        PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:"
1540
1550
        IF N>2 THEN 1680
1560
        FOR Ts≈1 TO T
                                    SIMILAR
1570
        Z=Z(Ts)
                                    ΤO
1580
        Q = (1 - EXP(-2)) \wedge (L-1)
                                    (94)
1590
        D1 = -LOG(1 - (1 - Pd1)/Q)
1600
        Rt1=Z/D1-1
                                 ! (95)
       D2=-LOG(1-(1-Pd2)/Q)
1610
1620
        Rt 2=Z/D2-1
        D3=-L0G(1-(1-Pd3)/Q)
1630
1640
        Rt3=Z/D3-1
1650
        PRINT 10*LGT(Rt1), 10*LGT(Rt2), 10*LGT(Rt3)
1660
        NEXT Ts
1670
        GOTO 1810
1680
        Rn=-1/N
                                    SIMILAR
1690
        FOR Ts=1 TO T
                                    TO
1700
        Zn=Z(Ts)/N
                                    (99)
1710
        Q=(1+2n)\wedge(-N)
1720
        Q = (1-Q) \land (L-1)
                                    (100)
1730
       D1=(1-(1-Pd1)/Q)^Rn-1
1740
        Rt1=Zn/D1-1
1750
       ■ D2=(1-(1-Pd2)/Q)^Rn-1
1760
        Rt2=Zn/D2-1
1770
       D3=(1-(1-Pd3)/Q)^Rn-1
1780
        Rt3=Zn/D3-1
        PRINT 10*LGT(Rt1), 10*LGT(Rt2), 10*LGT(Rt3)
1790
1800
        NEXT TE
1810
        PRINT
1820
        END
```

```
P1 = .85
             Dby = 10
                             T = 7
M = 8
             K = 12
                             11 = 16
                                          L = 24
Muy = 3.94631506068
                             Sigy = 2.09538979024
Muz = 4.32438211761
                             Sigz = 1.69328544323
 Y THRESHOLDS
                     NORMALIZED
                                         PROBABILITIES
 5.7085601983
                     .841010653879
                                         .85
 14.2714004957
                     4.92752493268
                                         .996€79075641
 22.8342407932
                     9.01403921147
                                         .999753631023
                     13.1005534903
 31.3970810906
                                         .999965311792
 39.9599213881
                     17.1870677691
                                         .99999280763
 48.5227616855
                     21.2735820479
                                         .999998067526
 57.085601983
                     25.3600963267
                                         .999999374796
 Z THRESHOLDS
                     NORMALIZED
                                         PROBABILITIES
 5.66721821227
                     .911149446675
                                         .85
 11.8779764405
                    4.46091021044
                                         .996679075641
 16.8024176865
                     7.36912705339
                                        .999753631023
 21.0784326281
                     9.89440414638
                                        .999965311792
 24.909916314
                     12,1571553566
                                         .99999280763
 28.4120734509
                     14.2254168838
                                         .999998067526
31.6575625522
                    16.1420985125
                                         .999999374796
Dbz = 7.32045232969
Pd1 = .5
                     Pd2 = .9
                                        Pd3 = .99
SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION:
 7.18029480646
                    16.5239686654
                                         26.8808804974
 12.6997498763
                     21,2426978346
                                         31.503743108
 14.8466399857
                                        33.5584316626
                     23.3091924052
 16.269595645
                    24.6986419313
                                        34.9428284925
                     25.7492651765
 17.3390310658
                                         35.9905902914
 18.1963923488
                     26.5945353622
                                         36.8340131363
 18.9120679996
                     27,3017783991
                                         37.5399641554
SIGNAL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:
 7.40601673703
                    16.6306689407
                                    26.9721139815
 11.9559811212
                     20.4527339701
                                         30.7066466017
13.5624054665
                    21,9841310487
                                        32.2269170012
14.587035072
                    22.975309045
                                        33.2129962117
15.3357177535
                    23.704135924
                                        33.9387696157
15.922698397
                    24.2777465869
                                        34.5103143719
16,4038217386
                    24.749160188
                                        34.9802228898
```

```
10
     ! NORMALIZER & ORING, EQUISPACED IN POWER, DIFF. NO. OF THRESHOLDS
 20
       P1 = .85
                                 ļ
                                    SPECIFIED PROBABILITY, (9)
 30
       Dby=10
                                    DECIBEL RATIO OF THRESHOLDS, (10)
                                    INITIAL NUMBER OF THRESHOLDS, (10)
 40
       T=7
 50
       U = 1.5
                                    NEW NUMBER OF THRESHOLDS, (24)
 60
       M=8
                                    INITIAL NORMALIZER SIZE > 2, (62)
     ! FOR NO INITIAL NORMALIZATION, THAT IS, M INFINITE, SET M <= 2
 70
 80
                                    INITIAL OR-ING SIZE > 0, (63)
       K = 1.2
                                 1
 90
       N=16
                                    NEW NORMALIZER SIZE > 2, (81)
     ! FOR NO NEW NORMALIZATION, THAT IS, N INFINITE, SET N <= 2
100
110
       L = 24
                                 Ţ
                                    NEW OR-ING SIZE > 0, (82)
120
       Pd1=.5
                                 į
                                    SPECIFIED
       Pd2=.9
130
                                 ŧ
                                     DETECTION
140
       Pd3=.99
                                 !
                                      PROBABILITIES, (30)
150
       PRINT "P1 ="; P1; "
                               Dby ="; Dby;"
                                                   T =";T;"
                                                                      U =";U
                                                                    L =";L
160
       PRINT "M =";M;"
                                K = "iKi"
                                                  H =":N;"
170
       REDIM Y(1:T),Yb(1:T),P(1:T),Zp(1:U),Zbp(1:U),Pp(1:U)
180
       DIM Y(99), Yb(99), P(99), Zp(99), Zbp(99), Pp(99)
                                    (67)
190
       Rk = 1/K
200
       R1=1/L
                                 Ţ
                                    (84)
210
       IF M>2 THEN 310
220
                                    M INFINITE
       F1=F2=0
                                 ļ
230
       FOR Ms=1 TO K
                                    (56), m
240
       R1=1/Ms
250
       F1=F1+R1
260
       F2=F2+R1*R1
270
       NEXT Ms
280
       Muy≂F1
                                    (56)
290
       Sigy=SQR(F2)
                                    (56)
300
       G070 400
       R1=1/M
310
                                    M > 2
320
       R2=2/M
       F1=F2=1
330
340
       FOR Ks=1 TO K
                                    (79), k
                                    (79)
350
       F1=F1*Ks/(Ks-R1)
                                 ţ
       F2=F2*Ks/(Ks-R2)
                                    (79)
360
370
       NEXT Ks
       Muy=M*(F1-1)
                                    (78)
380
390
       Sigu=M*SQR(F2-F1*F1)
                                 !
                                    (78)
400
       IF N>2 THEN 500
410
       G1=G2=0
                                 1
                                    H INFINITE
       FOR Ns=1 TO L
420
                                    (61), n
430
       R1=1/Ns
440
       G1 = G1 + R1
450
       G2=G2+R1*R1
460
       NEXT Ns
470
                                    (61)
       Muz=G1
                                    (61)
480
        Sigz=SQR(G2)
490
        GOTO 590
500
       R1=1/N
                                    N > 2
510
       R2=2/N
529
       G1 = G2 = 1
                                    (86), k
530
       FOR Ks=1 TO L
        G1=G1*Ks/(Ks-R1)
                                    (86)
540
                                    (86)
550
        G2=G2*Ks/(Ks-R2)
560
       HEXT Ks
570
        Muz=N*(G1-1)
                                    (85)
580
        Sigz=N*SQR(G2-G1*G1)
                                    (85)
        PRINT "Muy ="; Muy; "
                                      Sigy =";Sigy
590
        PRINT "Muz ="; Muz; "
                                      Sigz =":Sigz
600
610
        PRINT
```

```
! EQUISPACED IN DECIBELS: REMOVE 890-980 AND INSERT 630-720
                                ! (9) & (67)
638
      ! R#1-P1^Rk
€40
     ! IF M>2 THEN 670
650
     ! Y1=-L0G(R)
                                  (58)
660
     ! GOTO 680
670
     ! Y1=M*(R^(-1/M)-1)
                                   (67)
     ! D1=10*LGT(Y1)
680
                                   (14)
690
     ! Deld=Dby/(T-1)
                                   (15) & (16)
     ! FOR Ts=1 TO T
700
                                -
                                   (16), t
710
     ! Dt = D1 + De 1 d * (Ts - 1)
                                ļ
                                   (16)
      ! Y(Ts)=Y=10^(Dt/10)
720
                                ļ
                                   (17)
      ! PRESET CONSTANTS: REMOVE 890-990 AND INSERT 740-770
730
740
     ! DATA 1,3,5,7,9,10,11
                               .
                                   USER MUST INPUT I NUMBERS
750
      ! READ Yb(*)
                                   NORMALIZED Y THRESHOLDS
760
                                   (18), t
     ! FOR Ts=1 TO T
770
     ! Y(Ts)=Y=Muy+Sigy*Yb(Ts)!
                                   (18)
     ! PRESET PROBABILITIES: REMOVE 890-1040 AND INSERT 790-880
780
790
     ! DATA .9,.99,.999,.9999,.999999,.9999999
800
     ! READ P(*)
                                (19)
     ! FOR Ts=1 TO T
810
                                   (19). t
820
     ! P=P(Ts)
830
     ! R=1-P^Rk
                                   (58)
840
     ! IF M>2 THEN 870
850
     ! Y(Ts)=Y=-LOG(R)
                                   (58)
860
     ! GOTO 880
870
     ! Y(Ts)=Y=M*(R^(-1/M)-1) !
                                  (9) & (67)
     ! Yb(Ts)=(Y-Muy)/Sigy
880
                                -
                                   (12)
890
        R=1-P1^Rk
                                   (9) & (67)
                                1
        IF M>2 THEN 930
900
910
        Y1 = -LOG(R)
                                   (58)
920
        GOTO 940
930
        Y1=M*(R^(-1/M)-1)
                                   (67)
                                !
940
        Ay=10^(Dby/10)
                                1
                                   (10)
        Ytc=Y1*Ay
950
                                   (10)
                                1
960
        Dely=(Ytc-Y1)/(T-1)
                                   (11)
970
                                   (11), t
        FOR TS=1 TO T
980
        Y(Ts)=Y=Y1+Dely*(Ts-1)!
                                   (11)
990
        Yb(Ts)=(Y-Muy)/Sigy
                                   (12)
1000
        IF M>2 THEN 1030
1010
        R=EXP(-Y)
                                   (57)
        GOTO 1040
1020
1030
        R=(1+Y/M)^(-M)
                                ļ
                                   (13) & (66)
1040
        P(Ts)=(1-R)^K
                                   (66)
1050
        NEXT Ts
```

```
1060
        01 = 1 - P(1) \land R1
                                 ! (84)
1070
        Q \neq c = 1 - P(T) \land RT
                                    (84)
1080
        IF N>2 THEN 1120
1090
        Z1 = -L0G(Q1)
                                    (60)
1100
        Ztc = -LOG(0tc)
                                    (60)
1110
        GOTO 1150
1120
        Rn = -1/N
                                   (84)
1130
        Z1=H*(Q1^Rn-1)
                                   (21) & (84)
1140
        Ztc=N*(Qtc^Rn-1)
                                   (21) & (84)
1150
        Delz=(2tc-21)/(U-1)
                                   (24)
        FOR Us=1 TO U
1160
                                    (24), u
        Zp(Us)=Z=Z1+De1z*(Us-1)!
1170
                                    (24)
1180
        Zbp(Us)=(Z-Muz)/Sigz ! (26)
1190
        IF N>2 THEN 1220
1200
        Pp(Us)=(1-EXP(-Z))^L
                              ! (25) & (59)
1210
        GOTO 1230
1220
        Pp(Us)=(1-(1+Z/N)\wedge(-N))\wedge L + (25) & (83)
1230
        NEXT Us
1240
        Dbz=10*LGT(2p(U)/2p(1))! (23)
1250
        PRINT " Y THRESHOLDS
                                                   PROBABILITIES"
                                      NORMALIZED
        FOR Ts=1 TO T
1260
1270
        PRINT Y(Ts), Yb(Ts), P(Ts)
1280
        HEXT Is
1290
        PRINT
        PRINT " Z THRESHOLDS
1300
                                      NORMALIZED
                                                           PROBABILITIES"
1310
        FOR Us=1 TO U
1320
        PRINT Zp(Us), Zbp(Us), Pp(Us)
1330
        HEXT Us
1340
        PRINT
        PRINT "Dbz ="; Dbz
1350
1360
        PRINT
1361
          PAUSE
                                        Pd2 =";Pd2;"
1370
        PRINT " Pd1 =";Pd1;"
                                                                 Pd3 =":Pd3
1380
        PRINT
        PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION:"
1390
        IF M>2 THEN 1530
1400
1410
        FOR TEEL TO T
                                 ! (94), t
1420
        Y=Y(Ts)
1430
        Q=(1-EXP(-Y))^(K-1)
                                    (95)
        D1 = -LOG(1 - (1 - Pd1) \times Q)
                                    (94)
1440
                                    (94)
1450
        Rt1=Y\times D1=1
        D2 = -LOG(1 - (1 - Pd2)/Q)
1460
1470
        Rt2=Y/D2-1
1480
        D3=-L0G(1-(1-Pd3)/Q)
1490
        Rt3=Y/D3-1
1500
        PRINT 10*LGT(Rt1),10*LGT(Rt2),10*LGT(Rt3)
1510
       HEXT Ts
1520
        GOTO 1660
```

```
(99)
1530
        Rm=-1/M
540
        FOR Ts=1 TO T
                                     (99), t
        MN(aT)Y=mY
                                      (99) & (100)
1550
1560
        Q = (1 + Ym) \wedge (-M)
                                     (100)
1570
        Q=(1-Q)^(K-1)
                                     (100)
1580
        D1 = (1 - (1 - Pd1)/Q)^Rm - 1
                                     (99)
1590
        Rt1=Ym/D1-1
                                     (99)
1600
        D2 = (1 - (1 - Pd2) \times Q) \wedge Rm - 1
1610
        Rt 2=Ym/D2-1
1620
        D3 = (1 - (1 - Pd3) \times Q) \land Rm - 1
1630
        Rt3=Ym/D3-1
        PRINT 10*LGT(Rt1), 10*LGT(Rt2), 10*LGT(Rt3)
1640
1650
        NEXT Ts
1660
        PRINT
        PRINT "SIGNAL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:"
1670
        IF N>2 THEN 1810
1680
1690
        FOR Us=1 TO U
                                   ļ
                                      SIMILAR
        Z=Zp(Us)
                                      TO
1700
                                   1
1710
        Q=(1-EXP(-Z))^(L-1)
                                     (94)
        D1=-L0G(1-(1-Pd1)/Q)
1726
                                   ! &
                                   ! (95)
1730
        R1=Z/D1-1
1740
        D2=-LOG(1-(1-Pd2)/Q)
1750
        R2=Z/D2-1
        D3=-L0G(1-(1-Pd3)/Q)
1760
1770
        R3=Z/D3-1
        PRINT 10*LGT(R1), 10*LGT(R2), 10*LGT(R3)
1780
1790
        NEXT Us
         GOTO 1940
1800
1810
        Rn=-1/N
                                      SIMILAR
1820
        FOR Us=1 TO U
                                      TΟ
                                      (99)
1830
        2n=Zp(Us)/N
1840
         Q=(1+Zn)\wedge(-N)
1850
        Q = (1-Q) \land (L-1)
                                   ! (100)
        Di = (1 - (1 - Pd1) \times Q) \land Rn - 1
1860
1870
        R1=Zn/D1-1
        D2=(1-(1-Pd2)/Q)^Rn-1
1880
1890
         R2=Zn/D2-1
1900
         D3=(1-(1-Pd3)/Q)^Rn-1
1910
         R3=Zn/D3-1
        PRINT 10*LGT(R1), 10*LGT(R2), 10*LGT(R3)
1920
1930
        NEXT Us
        PRINT
1940
         END
1950
```

U = 15

T = 7

```
M = 8
              K = 12
                              N = 16
                                              L = 24
Muy = 3.94631506068
                              Sigy = 2.09538979024
Muz = 4.32438211761
                              Sigz = 1.69328544323
Y THRESHOLDS
                       NORMALIZED
                                           PROBABILITIES
 5.7085601983
                      .841010653879
                                           .85
 14.2714004957
                                           .996679075641
                      4.92752493268
 22.8342407932
                      9.01403921147
                                           .999753631023
 31.3970810906
                      13.1005534903
                                           .999965311792
 39.9599213881
                      17.1870677691
                                           .99999280763
 48.5227616855
                      21.2735820479
                                           .999998067526
 57.085601983
                      25.3600963267
                                           .999999374796
 Z THRESHOLDS
                      HORMALIZED
                                           PROBABILITIES
 5.86721821227
                      .911149446675
                                           .85
 7.70938566512
                      1.99907437995
                                           .956529647638
 9.55155311797
                      3.08699931323
                                           .98667504332
 11.3937205708
                      4.1749242465
                                           .99560662072
 13.23588888237
                      5.26284917978
                                           .998447087595
 15.0780554765
                      6.35077411306
                                           .999415549265
                                           .999767363279
 16.9202229294
                      7.43869904633
 18.7623903822
                      8.52662397961
                                           .999902645376
 20.6045578351
                      9.61454891288
                                           .999957385298
 22.4467252879
                      10.7024738462
                                           .999980574274
 24.2888927408
                      11.7903987794
                                           .999990813211
 26.1310601936
                      12.8783237127
                                           .999995507461
 27.9732276465
                      13.966248646
                                           .999997734746
 29.8153950993
                      15.0541735793
                                           .999998825244
 31.6575625522
                      16.1420985125
                                           .999999374796
Dbz = 7.32045232969
Pd1 = .5
                      Pd2 = .9
                                           Pd3 = .99
SIGNAL-TO-NOISE RATIOS (DB) FOR INITIAL TRANSFORMATION:
 7.18029480646
                      16.5239686654
                                           26.8808804974
 12.6997498763
                      21.2426978346
                                           31,503743108
 14.8466399857
                      23.3091924052
                                           33.5584316626
 16.269595645
                      24.6986419313
                                           34.9428284925
 17.3390310658
                      25.7492651765
                                           35.9905902914
 18.1963923488
                      26.5945353622
                                           36,8340131363
 18.9120679996
                      27.3017783991
                                           37.5399641554
SIGNAL-TO-NOISE RATIOS (DB) FOR NEW TRANSFORMATION:
 7.40601673703
                      16.6306689407
                                           26.9721139815
 9.64374630239
                      18.3703967446
                                           28.6551266507
 10.8741086655
                      19.4515609092
                                           29.7168048237
 11.7563696979
                      20.2655149832
                                           30.5212118605
 12.4659011251
                      20.9347216111
                                           31.1845531717
                      21.5092203112
                                           31.7549390039
 13.0680388962
 13.5941676551
                      22.0147264365
                                           32.2573356581
                      22.4668270369
 14.0624498591
                                           32.7069765459
 14.4847595558
                      22.8760203338
                                           33.1141652155
 14.8694755601
                      23.2498575248
                                           33.4863332091
 15.2228081965
                      23.5940083337
                                           33.8290709181
 15.5495188303
                      23.9128603228
                                           34.1467104786
 15.8533503185
                      24.2098871812
                                           34.4426853709
 16.1373031597
                      24.4878096233
                                           34.7197662984
 16.4038217386
                      24.749160188
                                           34.9802228898
```

P1 = .85

Dby = 10

REFERENCES

- [1] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
 Series, and Products, Academic Press, Inc., New York, NY, 1980.
- [2] Handbook of Mathematical Functions, U. S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series, Number 55, U. S. Government Printing Office, Washington, DC, June 1964.
- [3] A. H. Nuttall and A. F. Magaraci, Signal-to-Noise Ratios
 Required for Short-Term Narrowband Detection of Gaussian
 Processes, NUSC Technical Report 4417, Naval Underwater Systems
 Center, New London, CT, 20 October 1972.
- [4] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Volume 1, Distribution Theory, Third Edition, Hafner Publishing Company, New York, NY, 1969.

INITIAL DISTRIBUTION LIST

Addressee	No. of Copie
Admiralty Underwater Weapons Establishment, England	
Library	1
Center for Naval Analyses	1
Coast Guard Academy	
Prof. J. J. Wolcin	1
David Taylor Research Center, Bethesda, MD	
Commander	1
H. Chaplin	1
L. Becker	1
W. Phillips (Code 1932)	1
David Taylor Research Center, Annapolis	
P. Prendergast (Code 2744)	1
Defense Nuclear Agency, RAAE	
J. Meyers	1
Defence Research Center, Australia	
Library	1
Defence Research Establishment Atlantic, Nova Scotia	
B. E. Mackey (Library)	1
Defence Research Establishment Pacific, British Columbia	
Dr. D. J. Thomson	1
Defence Science Establishment, HMNZ Dockyard, New Zealand	
Director	1
Defence Scientific Establishment, New Zealand	
Dr. L. H. Hall	1
Defense Advanced Research Projects Agency	
Commanding Officer	1
A. W. Ellinthorpe	1
Defense Intelligence Agency	1
Defense Technical Information Center	12
Dept. of Science & Industrial Research, New Zealand	
M. A. Poletti	1
National Radio Astronomy Observatory	
F. Schwab	1
National Security Agency	
Dr. J. R. Maar (R51)	1
Naval Air Development Center	
Commander	1
A. Witt	1
T. Madera	1
L. Allen (Code 50)	1
Naval Air Systems Command	
NAIR-93	1
Naval Coastal Systems Center	-
Commanding Officer	1
D. Skinner	1
E. Linsenmeyer	i
Naval Environmental Prediction Research Facility	ī
Naval Intelligence Command	1
Naval Oceanographic Office	1
	-

Addressee	No. of Copies
Naval Oceanographic & Atmospheric Research Laboratory, CA	
M. J. Pastore	1
Naval Oceanographic & Atmospheric Research Laboratory, MS	
Commanding Officer	1
R. Wagstaff (Code 245)	1
B. Adams	1
E. Franchi	1
R. Fiddler (Code 245)	1
Naval Ocean Systems Center, Hawaii	1
Naval Ocean Systems Center, San Diego	•
Commanding Officer	1
J. M. Alsup (Code 635)	1
J. Silva D. Hanna	1
	1
P. Nachtigall W. Marsh	1
C. Persons	1 1
Naval Personnel Research & Development Center	1
Naval Postgraduate School	1
Superintendent	2
Prof. C. W. Therrien (Code 62 TI)	1
Naval Research Laboratory, Orlando, USRD	1
Naval Research Laboratory, Washington	_
Commanding Officer	1
Dr. P. B. Abraham (Code 5131)	1
W. F. Gabriel (Code 5370)	1
A. A. Gerlach	1
N. Yen (Code 5130)	1
D. Bradley	1
S. Sachs	1
D. Steiger	1
E. Wald (Code 5150)	1
Naval Sea Systems Command	
SEA-00; -63; -63D; -63X; -92R; PMS-402	6
Naval Surface Warfare Center	
J. Gray (Code G71)	1
Naval Surface Weapons Center, Dahlgren, VA	_
Commander	1
H. Crisp	1
D. Phillips	1
T. Ryczek	1
Naval Surface Weapons Center, White Oak Lab.	1
M. Strippling	1
Naval Surface Weapons Center, Fort Lauderdale	1
Naval Technical Intelligence Center	2
Commanding Officer	2
D. Rothenberger	1
Naval Underwater Systems Center, West Palm Beach	1
Officer-in-Charge	1 1
Dr. R. M. Kennedy (Code 3802)	1

Addressee	No. of Copies
Naval Weapons Center	1
Norwegian Defence Research Establishment	•
Dr. J. Glattetre	1
Office of the Chief of Naval Research, Arlington, VA	
OCNR-00; -10; -11; -12; -13; -20; -21; -22; -23 (3)	11
N. L. Gerr (Code 1111)	1
A. Wood	1
D. Johnson	1
SACLANT Undersea Research Center	
Dr. J. P. Ianniello	1
Dr. S. Stergiopolous	1
Prof. G. Tacconi	1
Library	1
Sonar and Surveillance Group, RANRL, Australia	1
Space & Naval Warfare System Command	
SPAWAR-00; -04; -005; PD-80; PMW-181	5
L. Parrish	1
R. Cockerill	1
U.S. Air Force, Alabama	
Air University Library	1
U.S. Coast Guard Research & Development Center	_
Library	1
U.S. Department of Commerce, NTIA/ITS	_
Dr. A. D. Spaulding	1
Weapons Systems Research Laboratory, Australia	•
HASC	1
HSPC	1
Brown University	
Documents Library	1
Canberra College of Advanced Education	
P. Morgan	1
Concordia University, Quebec	
Prof. J. Krolik	1
Dalhousie University	_
Dr. B. Ruddick	1
Drexel University	_
Prof. S. B. Kesler	1
Harvard University	•
Gordon McKay Library	1
Indian Institute of Technology, India	•
Dr. K. M. M. Prabhu	1
Johns Hopkins University, Applied Physics Laboratory Director	1
J. C. Stapleton	1
Kansas State University	1
Prof. B. Harms	1
Lawrence Livermore National Laboratory	1
Director	1
L. C. Ng	1
M. V. IIB	1

Addressee	No. of Copies
Los Alamos National Laboratory	1
Marine Biological Laboratory, Woods Hole	ī
Marine Physical Laboratory, Scripps	1
Massachusetts Institute of Technology	
Prof. A. B. Baggaroer	1
Barker Engineering Library	1
Northeastern University	
Prof. C. L. Nikias	1
Penn State University, Applied Research Laboratory	
Director	1
F. W. Symons	1
R. Hettche	1
E. Liszka	1
Purdue University	
Prof. N. Srinivasa	1
Royal Military College of Canada	
Prof. Y. T. Chan	1
Rutgers University	
Prof. S. Orfanidis	1
San Diego State University	
Prof. F. J. Harris	1
Sandia National Laboratory	_
Director	1
J. Claasen (315)	1
Simon Fraser University	•
Dr. E. F. Velez	1
Southeastern Massachusetts University	•
Prof. C. H. Chen	1
State University of New York	1
Prof. M. Barkat	1
Tel- Aviv University, Israel	1
Prof. E. Weinstein	1
United Engineering Center	1
Engineering Societies Library	1
University of Alberta, Canada	1
K. L. Yeung University of Auckland	1
Dr. M. D. Johns	1
University of California, San Diego	•
Prof. C. W. Helstrom	1
University of Colorado	•
Prof. L. L. Scharf	1
University of Connecticut	•
Prof. C. H. Knapp	1
Wilbur Cross Library	i
University of Florida	•
Prof. D. C. Childers	1
University of Illinois	•
Dr. D. L. Jones	1

Addressee	No. of Copies
University of Michigan	
Communications & Signal Processing Laboratory	1
W. J. Williams	ī
University of Minnesota	
Prof. M. Kaveh	1
University of Queensland	
Dr. B. Boashash	1
University of Rhode Island	
Prof. G. F. Boudreaux-Bartels	1
Prof. S. M. Kay	1
Prof. D. Tufts	1
Library	1
University of Rochester	
Prof. E. Titlebaum	1
University of Southern California	
Prof. W. C. Lindsey	1
Dr. A. Polydoros	1
University of Strathclyde, Scotland	
Prof. T. S. Durrani	1
University of Technology, England	
Prof. J. W. R. Griffiths	1
University of Texas, Applied Research Laboratory	1
University of Washington	
Applied Physics Laboratory	1
Prof. D. W. Lytle	1
Dr. R. C. Spindel	1
Villanova University	_
Prof. M. G. Amin	1
Woods Hole Oceanographic Institution	_
Director	1
Dr. E. Weinstein	1
Yale University	4
Prof. A. Nehorai	1
Prof. P. M. Schultheiss	1
Prof. F. Tuteur	1
Kline Science Library	1
Applied Seismic Group	
R. Lacoes	1
A&T, North Stonington, CT	
H. Jarvis	1
A&T, Arlington, VA	
D. L. Clark	1
BB&N, Arlington, VA	
Dr. H. Cox	1
BB&N, Cambridge, MA	
H. Gish	1
BB&N, New London, CT	
Dr. P. G. Cable	1

Bell Communications Research J. F. Kaiser D. Sunday 1 Berkeley Research Associates Steven W. McDonald 1 Cogent Systems, Inc.
J. F. Kaiser 1 D. Sunday 1 Berkeley Research Associates Steven W. McDonald 1
D. Sunday 1 Berkeley Research Associates Steven W. McDonald 1
Steven W. McDonald 1
Cogent Systems Inc
J. P. Costas
Diagnostic/Retrieval Systems, Inc.
J. Williams
EDO Corporation
M. Blanchard
EG&G
D. Frohman General Flectric Company Moorestourn NI
General Electric Company, Moorestown, NJ Dr. M. R. Allen 1
H. Urkowitz
General Electric Company, Philadelphia, PA
T. J. McFall
General Electric Company, Pittsfield, MA
R. W. Race
General Electric Company, Syracuse, NY
Dr. A. M. Vural
D. Winfield 1
Harris Scientific Services
B. Harris
Hughes Aircraft Company, Buena Park, CA
T. E. Posch
IBM
G. L. Demuth
Interstate Electronics Corporation
R. O. Nielsen (Dept. 8011)
Kildare Corporation
Dr. R. Mellen
Lincom Corporation
Dr. T. A. Schonhoff
Magnavox Elec. Systems Company
R. Kenefic (Dept. 525)
MSB Systems, Inc. A. Winder 1
Nichols Research Corporation
Dr. T. L. Marzetta 1
Orincon Corporation
S. L. Marple 1
Dr. J. W. Young
Prometheus, Inc., Newport, RI
M. J. Barrett
Prometheus, Inc., Sharon, MA
Dr. J. S. Byrnes 1
RAN Research Lab, Australia 1

Addressee	No. of Copies
Raytheon, Portsmouth, RI	
J. Bartram	1
R. Conner	1
S. S. Reese	1
Rockwell International	•
L. T. Einstein	1
Dr. D. F. Elliott	i
SAIC, Falls Church, VA	•
Dr. P. Mikhalevsky	1
SAIC, New London	-
Dr. F. DiNapoli	1
SIMRAD SUBSEA A/S, Naval Systems Div.	-
E. B. Lunde	1
Sperry Corporation, Defense Marine Systems Unit	ī
Toyon Research Corporation	
M. L. Van Blaricum	1
Tracor	_
Dr. T. J. Leih	1
TRW, Fairfax, VA	_
R. Prager	1
G. Maher	1
TRW, New London, CT	_
D. Sturim	1
Welse Sistemi Subacquei, Genova, Italy	-
Dr. H. Van Asselt	1
Westinghouse Electric Corporation, Annapolis, MD	-
H. Newman	1
Dr. H. L. Price	1
Westinghouse Electric Corporation, Baltimore, MD	_
R. Park	1
Westinghouse Electric Corporation, Waltham, MA	
R. B. Kennedy	1
·	
Assard, G. L.	1
Beidas, B.	ī
Bendat, Dr. J. S.	1
Bleistein, Dr. N.	1
Cohen, Dr. L.	ī
Hahn, W. R.	1
Lloyd, L.	1
Maltz, F.	1
Middleton, Dr. D.	1
Nash, H. E.	1
Nicholson, D.	1
O'Brien, W.	1
Papoutsanis, P.D.	1
Pohler, R. F.	1

Addressee	No. of Copies
Price, Dr. R.	1
Raisbeck, Dr. G.	1
Richter, W.	1
Schulkin, Dr. M.	1
Urick, R. J.	1
Von Winkle, Dr. W. A.	1
Werbner, A.	1
Wilson, Dr. J. H.	1